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The ambiphilic phosphino-borane i-Pr2P(o-C6H4)BMes2 affords

stable versions of key zwitterionic intermediates by reactions

with diethyl azodicarboxylate or PhNCO.

Over the past 20 years, derivatives combining donor and

acceptor functionalities, so-called ambiphilic compounds,

have attracted increasing interest. In particular, combinations

of phosphine and borane moieties have been studied as

p-conjugated materials,1 as metal-free systems capable of

dihydrogen activation and transfer,2 and as versatile ligands

for transition metals.3

In order to further exploit phosphino-borane (PB) com-

pounds,4 we recently investigated their potential for the stabi-

lisation of highly reactive adducts of phosphines. For example,

the Staudinger reaction between PhN3 and PB compound

i-Pr2P(o-C6H4)BMes2 (1) was shown to give a phosphazide

with a high thermal stability as a result of intramolecular

Na-B interactions. Notably, this compound exhibits unpre-

cedented photoisomerization behavior, in which an Na-B

interaction is converted to an Nb-B coordination.5

Following the spectacular synthetic developments reported

recently in phosphine-promoted reactions,6 we were intrigued

by the possibility of using PBs such as 1 for the stabilisation of

key intermediates in similar reactions. In this regard, zwitter-

ionic intermediates A and B (Fig. 1), resulting from the

nucleophilic addition of phosphines to azodicarboxylates

and isocyanates, respectively, were chosen as representative

targets. On the one hand, ‘‘Huisgen zwitterions’’ A are gen-

erally accepted as the first intermediates in phosphine-pro-

moted reactions of azodicarboxylates, including the famous

Mitsunobu reaction,7–9 as well as C–C and C–N bond-forming

reactions.10 However, the transient formation of compounds

of type A has so far only been substantiated by 31P NMR and

FTIR spectroscopy, as well as chemical trapping.11 On the

other hand, phosphines are well-known catalysts for the cyclo-

oligomerisation of isocyanates, but very little is known about

the mechanism of this reaction.12–15 Verkade et al. detected the

1 : 1 adduct between a proazaphosphatrane and PhNCO by
31P NMR.12 In addition, Horváth et al. recently reported 1 : 2

adducts between tri(n-butyl)phosphine and n-alkyl isocya-

nates, which were characterised in situ by NMR spectro-

scopy.13

Here, we report the ability of PB compound 1 to afford

stable versions of key zwitterionic intermediates A and B by

reaction with diethyl azodicarboxylate (DEAD) and PhNCO,

respectively. Adducts 2 and 3O have both been characterized

structurally, and DFT calculations have substantiated the

selectivity and reversibility of the fixation of the isocyanate.

PB 1
5 reacted with DEAD in toluene to afford a single

product, but a large excess of DEAD (5 equiv.) was necessary

to achieve complete conversion in a reasonable time at room

temperature (Scheme 1).w After work up, the resulting com-

pound, 2, was isolated in 65% yield as a white solid. The

derivatization of the phosphorus centre was apparent from the

low field shift of the 31P NMR signal (from +5.5 ppm in 1 to

+60.4 ppm in 2), while the high field shift of the 11B NMR

signal (from +75.0 ppm in 1 to �0.8 ppm in 2) indicated a

change from tri- to tetra-coordinate boron. In addition, the

formation of a 1 : 1 adduct was demonstrated by mass

spectrometry (MH+ found at m/z = 617). The spectroscopic

Fig. 1 1 : 1 adducts, A and B, of phosphines with azodicarboxylates

and isocyanates, respectively.
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data for 2 support a zwitterionic structure combining phos-

phonium and borate units, which was unambiguously con-

firmed by an X-ray diffraction analysis (Fig. 2).z Two

molecules with very similar geometries were found within the

unit cell. The short N� � �B distance (1.66 Å) and the noticeable

pyramidalization of the boron environment (SBa B 3371)

confirm the ability of the borane moiety of 1 to interact with

an electron rich centre maintained in close proximity, despite

the steric constraints imposed by the two mesityl groups.

Having established that PB 1 is capable of stabilising

reactive intermediates in phosphine-promoted transforma-

tions, an evaluation of its scope was of interest. To this end,

the reaction of 1 with PhNCO was investigated. Treatment of

1 with an excess (5 equiv.) of PhNCO in toluene at room

temperature afforded within 1 h a single compound that

exhibited 31P and 11B NMR signals at +1.2 and +4.7 ppm,

respectively (Scheme 2). The selective formation of a 1 : 1

adduct was indicated by mass spectrometry (MH+ found at

m/z = 562). At this stage, two isomeric structures, 3O and 3N
(resulting from the addition of 1 to the CQO and CQN bonds

of PhNCO, respectively), had to be considered. Neither the
13C NMR chemical shift for the central carbon atom of the

PhNCO unit (doublet, 150.6 ppm, 1JPC = 120 Hz),16 nor the

IR band observed at 1616 cm�1 were sufficient to discriminate

between 3O and 3N. However, the identity of the adduct was

unambiguously established by an X-ray diffraction study

(Fig. 2).z As expected, the phosphorus atom is bonded to

the central carbon atom of the PhNCO moiety. The C� � �N
distance (1.29 Å) is typical for a CQN double bond, and the

phenyl group at the nitrogen is trans to the phosphonio group

in order to minimize steric constraints. In addition, the boron

strongly interacts with the oxygen atom (O� � �B distance =

1.60 Å; boron pyramidalization = 3411).

In order to gain more insight into the selective formation of

the 1 : 1 adduct 3O, DFT calculations were carried out at the

B3PW91/SDD(P),6-31G** (other atoms) level of theory

(Table 1).w The model adduct, 3*, resulting from the reaction

of the permethylated PB with MeNCO was first investigated.

Two minima, 3*N and 3*O, featuring N-B and O-B inter-

actions, respectively, were located on the potential energy

surface (Fig. 3). In contrast with experimental observations,

isomer 3*N, resulting from the addition to the CQN bond of

the isocyanate, was found to be favoured energetically by

about 8 kcal mol�1 over 3*O. In order to estimate the influence

of steric factors on the selectivity, the two isomers of actual

adduct 3 were then studied. Here, the optimized geometry of

3O reproduced very well the structure found experimentally. In

addition, 3O was predicted to be about 13 kcal mol�1 more

stable than 3N, thereby confirming the key role of the sterically

Scheme 1 Formation of 1 : 1 adduct 2 from PB 1 and DEAD.

Fig. 2 Molecular views of 2 (left) and 3O (right) in the solid state

(thermal ellipsoids at 50% probability). The isopropyl, mesityl, ethyl

and phenyl groups are simplified, with the hydrogen atoms and solvate

molecules omitted for clarity. For 2, only one of the two independent

molecules present in the asymmetric unit is shown.

Scheme 2 Formation of 1 : 1 adduct 3O from PB 1 and PhNCO.

Table 1 Experimental and theoreticala data for adducts 3N, 3O, 3*N and 3*O: selected bond lengths, bond and torsion angles, and relative energies

Adduct C� � �O/Å C� � �N/Å N� � �B or O� � �B/Å SBa (1) PCCB (1) DE/kcal mol�1

3O X-Ray 1.294(4) 1.292(4) 1.601(4) 340.8 12.1 —
3*N DFT 1.238 1.319 1.615 329.0 0.0 0
3*O DFT 1.289 1.281 1.583 335.7 2.3 +8.3
3N DFT 1.234 1.340 1.670 326.7 14.1 0
3O DFT 1.289 1.287 1.582 341.5 8.0 �12.8
a At the B3PW91/SDD(P),6-31G** (other atoms) level of theory.
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demanding substituents of 1 in the selective addition to the

CQO double bond (a higher steric congestion can be reason-

ably anticipated in 3N vs. 3O).

In line with the large excess of PhNCO required to achieve

good yields of 3O, the formation of 3O is predicted to be

almost athermic (at 25 1C, DH = 0.7 kcal mol�1 leading to

DG = 18.9 kcal mol�1, as a result of an important entropic

effect). This also suggests that the fixation of the isocyanate

might be reversible, and indeed, crystals of 3O slowly release 1

and PhNCO upon dissolution,17 as indicated by 31P NMR and

IR spectroscopic monitoring.

In conclusion, PB 1 has been shown to react readily with

DEAD and PhNCO to afford isolable examples of the zwit-

terionic 1 : 1 adducts A and B, as a result of intramolecular

stabilisation by the Lewis acid moiety. These results extend the

synthetic application of ambiphilic compounds to the stabili-

sation of reactive intermediates. Variation of the electrophilic

partner is currently under investigation,18,19 as is the modula-

tion of the ambiphilic probe.
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Fig. 3 Optimized structures of 3*N and 3*O.
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